Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fungal community composition and metabolism under elevated CO(2) and O(3).

Identifieur interne : 003E14 ( Main/Exploration ); précédent : 003E13; suivant : 003E15

Fungal community composition and metabolism under elevated CO(2) and O(3).

Auteurs : Haegeun Chung [États-Unis] ; Donald R. Zak ; Erik A. Lilleskov

Source :

RBID : pubmed:16205953

Descripteurs français

English descriptors

Abstract

Atmospheric CO(2) and O(3) concentrations are increasing due to human activity and both trace gases have the potential to alter C cycling in forest ecosystems. Because soil microorganisms depend on plant litter as a source of energy for metabolism, changes in the amount or the biochemistry of plant litter produced under elevated CO(2) and O(3) could alter microbial community function and composition. Previously, we have observed that elevated CO(2) increased the microbial metabolism of cellulose and chitin, whereas elevated O(3) dampened this response. We hypothesized that this change in metabolism under CO(2) and O(3) enrichment would be accompanied by a concomitant change in fungal community composition. We tested our hypothesis at the free-air CO(2) and O(3) enrichment (FACE) experiment at Rhinelander, Wisconsin, in which Populus tremuloides, Betula papyrifera, and Acer saccharum were grown under factorial CO(2) and O(3) treatments. We employed extracellular enzyme analysis to assay microbial metabolism, phospholipid fatty acid (PLFA) analysis to determine changes in microbial community composition, and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) to analyze the fungal community composition. The activities of 1,4-beta-glucosidase (+37%) and 1,4,-beta-N-acetylglucosaminidase (+84%) were significantly increased under elevated CO(2), whereas 1,4-beta-glucosidase activity (-25%) was significantly suppressed by elevated O(3). There was no significant main effect of elevated CO(2) or O(3) on fungal relative abundance, as measured by PLFA. We identified 39 fungal taxonomic units from soil using DGGE, and found that O(3) enrichment significantly altered fungal community composition. We conclude that fungal metabolism is altered under elevated CO(2) and O(3), and that there was a concomitant change in fungal community composition under elevated O(3). Thus, changes in plant inputs to soil under elevated CO(2) and O(3) can propagate through the microbial food web to alter the cycling of C in soil.

DOI: 10.1007/s00442-005-0249-3
PubMed: 16205953


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fungal community composition and metabolism under elevated CO(2) and O(3).</title>
<author>
<name sortKey="Chung, Haegeun" sort="Chung, Haegeun" uniqKey="Chung H" first="Haegeun" last="Chung">Haegeun Chung</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Natural Resources and Environment, University of Michigan, Ann Arbor, Michigan 48109-1115, USA. hgchung@ucdavis.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Natural Resources and Environment, University of Michigan, Ann Arbor, Michigan 48109-1115</wicri:regionArea>
<wicri:noRegion>Michigan 48109-1115</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zak, Donald R" sort="Zak, Donald R" uniqKey="Zak D" first="Donald R" last="Zak">Donald R. Zak</name>
</author>
<author>
<name sortKey="Lilleskov, Erik A" sort="Lilleskov, Erik A" uniqKey="Lilleskov E" first="Erik A" last="Lilleskov">Erik A. Lilleskov</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16205953</idno>
<idno type="pmid">16205953</idno>
<idno type="doi">10.1007/s00442-005-0249-3</idno>
<idno type="wicri:Area/Main/Corpus">003F47</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003F47</idno>
<idno type="wicri:Area/Main/Curation">003F47</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003F47</idno>
<idno type="wicri:Area/Main/Exploration">003F47</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Fungal community composition and metabolism under elevated CO(2) and O(3).</title>
<author>
<name sortKey="Chung, Haegeun" sort="Chung, Haegeun" uniqKey="Chung H" first="Haegeun" last="Chung">Haegeun Chung</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Natural Resources and Environment, University of Michigan, Ann Arbor, Michigan 48109-1115, USA. hgchung@ucdavis.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Natural Resources and Environment, University of Michigan, Ann Arbor, Michigan 48109-1115</wicri:regionArea>
<wicri:noRegion>Michigan 48109-1115</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zak, Donald R" sort="Zak, Donald R" uniqKey="Zak D" first="Donald R" last="Zak">Donald R. Zak</name>
</author>
<author>
<name sortKey="Lilleskov, Erik A" sort="Lilleskov, Erik A" uniqKey="Lilleskov E" first="Erik A" last="Lilleskov">Erik A. Lilleskov</name>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="ISSN">0029-8549</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetylglucosaminidase (analysis)</term>
<term>Acetylglucosaminidase (metabolism)</term>
<term>Carbon (metabolism)</term>
<term>Carbon Dioxide (analysis)</term>
<term>Ecosystem (MeSH)</term>
<term>Extracellular Space (enzymology)</term>
<term>Fatty Acids (analysis)</term>
<term>Fatty Acids (metabolism)</term>
<term>Food Chain (MeSH)</term>
<term>Fungi (chemistry)</term>
<term>Fungi (metabolism)</term>
<term>Ozone (analysis)</term>
<term>Polymerase Chain Reaction (MeSH)</term>
<term>Soil (analysis)</term>
<term>Soil Microbiology (MeSH)</term>
<term>beta-Glucosidase (analysis)</term>
<term>beta-Glucosidase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acetylglucosaminidase (analyse)</term>
<term>Acetylglucosaminidase (métabolisme)</term>
<term>Acides gras (analyse)</term>
<term>Acides gras (métabolisme)</term>
<term>Carbone (métabolisme)</term>
<term>Chaine alimentaire (MeSH)</term>
<term>Champignons (composition chimique)</term>
<term>Champignons (métabolisme)</term>
<term>Dioxyde de carbone (analyse)</term>
<term>Espace extracellulaire (enzymologie)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Ozone (analyse)</term>
<term>Réaction de polymérisation en chaîne (MeSH)</term>
<term>Sol (analyse)</term>
<term>bêta-Glucosidase (analyse)</term>
<term>bêta-Glucosidase (métabolisme)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Acetylglucosaminidase</term>
<term>Carbon Dioxide</term>
<term>Fatty Acids</term>
<term>Ozone</term>
<term>Soil</term>
<term>beta-Glucosidase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acetylglucosaminidase</term>
<term>Carbon</term>
<term>Fatty Acids</term>
<term>beta-Glucosidase</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Acetylglucosaminidase</term>
<term>Acides gras</term>
<term>Dioxyde de carbone</term>
<term>Ozone</term>
<term>Sol</term>
<term>bêta-Glucosidase</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Champignons</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Espace extracellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Extracellular Space</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acetylglucosaminidase</term>
<term>Acides gras</term>
<term>Carbone</term>
<term>Champignons</term>
<term>bêta-Glucosidase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Ecosystem</term>
<term>Food Chain</term>
<term>Polymerase Chain Reaction</term>
<term>Soil Microbiology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chaine alimentaire</term>
<term>Microbiologie du sol</term>
<term>Réaction de polymérisation en chaîne</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Atmospheric CO(2) and O(3) concentrations are increasing due to human activity and both trace gases have the potential to alter C cycling in forest ecosystems. Because soil microorganisms depend on plant litter as a source of energy for metabolism, changes in the amount or the biochemistry of plant litter produced under elevated CO(2) and O(3) could alter microbial community function and composition. Previously, we have observed that elevated CO(2) increased the microbial metabolism of cellulose and chitin, whereas elevated O(3) dampened this response. We hypothesized that this change in metabolism under CO(2) and O(3) enrichment would be accompanied by a concomitant change in fungal community composition. We tested our hypothesis at the free-air CO(2) and O(3) enrichment (FACE) experiment at Rhinelander, Wisconsin, in which Populus tremuloides, Betula papyrifera, and Acer saccharum were grown under factorial CO(2) and O(3) treatments. We employed extracellular enzyme analysis to assay microbial metabolism, phospholipid fatty acid (PLFA) analysis to determine changes in microbial community composition, and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) to analyze the fungal community composition. The activities of 1,4-beta-glucosidase (+37%) and 1,4,-beta-N-acetylglucosaminidase (+84%) were significantly increased under elevated CO(2), whereas 1,4-beta-glucosidase activity (-25%) was significantly suppressed by elevated O(3). There was no significant main effect of elevated CO(2) or O(3) on fungal relative abundance, as measured by PLFA. We identified 39 fungal taxonomic units from soil using DGGE, and found that O(3) enrichment significantly altered fungal community composition. We conclude that fungal metabolism is altered under elevated CO(2) and O(3), and that there was a concomitant change in fungal community composition under elevated O(3). Thus, changes in plant inputs to soil under elevated CO(2) and O(3) can propagate through the microbial food web to alter the cycling of C in soil.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16205953</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>05</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0029-8549</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>147</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2006</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Fungal community composition and metabolism under elevated CO(2) and O(3).</ArticleTitle>
<Pagination>
<MedlinePgn>143-54</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Atmospheric CO(2) and O(3) concentrations are increasing due to human activity and both trace gases have the potential to alter C cycling in forest ecosystems. Because soil microorganisms depend on plant litter as a source of energy for metabolism, changes in the amount or the biochemistry of plant litter produced under elevated CO(2) and O(3) could alter microbial community function and composition. Previously, we have observed that elevated CO(2) increased the microbial metabolism of cellulose and chitin, whereas elevated O(3) dampened this response. We hypothesized that this change in metabolism under CO(2) and O(3) enrichment would be accompanied by a concomitant change in fungal community composition. We tested our hypothesis at the free-air CO(2) and O(3) enrichment (FACE) experiment at Rhinelander, Wisconsin, in which Populus tremuloides, Betula papyrifera, and Acer saccharum were grown under factorial CO(2) and O(3) treatments. We employed extracellular enzyme analysis to assay microbial metabolism, phospholipid fatty acid (PLFA) analysis to determine changes in microbial community composition, and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) to analyze the fungal community composition. The activities of 1,4-beta-glucosidase (+37%) and 1,4,-beta-N-acetylglucosaminidase (+84%) were significantly increased under elevated CO(2), whereas 1,4-beta-glucosidase activity (-25%) was significantly suppressed by elevated O(3). There was no significant main effect of elevated CO(2) or O(3) on fungal relative abundance, as measured by PLFA. We identified 39 fungal taxonomic units from soil using DGGE, and found that O(3) enrichment significantly altered fungal community composition. We conclude that fungal metabolism is altered under elevated CO(2) and O(3), and that there was a concomitant change in fungal community composition under elevated O(3). Thus, changes in plant inputs to soil under elevated CO(2) and O(3) can propagate through the microbial food web to alter the cycling of C in soil.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chung</LastName>
<ForeName>Haegeun</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>School of Natural Resources and Environment, University of Michigan, Ann Arbor, Michigan 48109-1115, USA. hgchung@ucdavis.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zak</LastName>
<ForeName>Donald R</ForeName>
<Initials>DR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lilleskov</LastName>
<ForeName>Erik A</ForeName>
<Initials>EA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>10</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005227">Fatty Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>66H7ZZK23N</RegistryNumber>
<NameOfSubstance UI="D010126">Ozone</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.21</RegistryNumber>
<NameOfSubstance UI="D001617">beta-Glucosidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.52</RegistryNumber>
<NameOfSubstance UI="D000118">Acetylglucosaminidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000118" MajorTopicYN="N">Acetylglucosaminidase</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005110" MajorTopicYN="N">Extracellular Space</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005227" MajorTopicYN="N">Fatty Acids</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020387" MajorTopicYN="N">Food Chain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010126" MajorTopicYN="N">Ozone</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001617" MajorTopicYN="N">beta-Glucosidase</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2004</Year>
<Month>10</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2005</Year>
<Month>08</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16205953</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-005-0249-3</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 1998 Apr 17;280(5362):441-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9545223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2000 Aug;124(3):432-445</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2001 Jul;128(2):237-250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 May 14;284(5417):1177-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10325230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Dec;168(3):623-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16313645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2001;115(3):395-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11789920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 May 16;276(5315):1045-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9148793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1990 Feb;82(2):248-250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28312671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1996 Jan-Feb;16(1_2):145-152</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1999 Jun;119(4):572-577</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1997 Dec;17(12):805-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14759890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1979 Jan;40(1):51-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28309603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2002 Nov;4(11):634-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12460271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Feb;64(2):613-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9464399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2003 May;45(4):373-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12704558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 1994;83(1-2):155-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15091762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2002 Apr;131(2):236-244</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547691</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Lilleskov, Erik A" sort="Lilleskov, Erik A" uniqKey="Lilleskov E" first="Erik A" last="Lilleskov">Erik A. Lilleskov</name>
<name sortKey="Zak, Donald R" sort="Zak, Donald R" uniqKey="Zak D" first="Donald R" last="Zak">Donald R. Zak</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Chung, Haegeun" sort="Chung, Haegeun" uniqKey="Chung H" first="Haegeun" last="Chung">Haegeun Chung</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003E14 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003E14 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16205953
   |texte=   Fungal community composition and metabolism under elevated CO(2) and O(3).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16205953" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020